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Abstract
We consider the time-independent Wigner functions of phase-space quantum
mechanics (also known as deformation quantization) for a Morse potential.
First, we find them by solving the ∗-eigenvalue equations, using a method
that can be applied to potentials that are polynomial in an exponential. A
Mellin transform converts the ∗-eigenvalue equations to difference equations,
and factorized solutions are found directly for all values of the parameters. The
symbols found this way are of both diagonal and off-diagonal density operator
elements in the energy basis. The Wigner transforms of the density matrices
built from the known wavefunctions are then shown to confirm the solutions.

PACS numbers: 03.65.−w, 03.65.Db, 03.65.Sq, 03.65.Nk

1. Introduction

Phase-space quantum mechanics (see e.g. [1, 2]) is also known as deformation quantization
(see [3]), where the density operator is replaced by its symbol, the Wigner function (or
distribution) on phase space, and its equations of motion involve the Moyal ∗-product.
Although a completely autonomous formulation of quantum mechanics results, the
∗-eigenvalue equations obtained are difficult to solve. Few closed-form solutions have been
found; see [1, 4] and references therein. Here we derive a new, explicit solution of the
∗-eigenvalue equations of phase-space quantum mechanics by treating the Morse potential.

The Morse potential is used in a wide variety of physical applications1. The original work
[5] discussed the vibrational states of diatomic molecules. Other seminal uses of the Morse
potential include the description of the rotating vibrational states of diatomic molecules [6],
the interatomic potential of cubic metals [7] and the potential for the adsorption of a molecule

1 No review of these applications seems to have been published, however.
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or atom by a solid surface [8]. This list is far from comprehensive and new applications
continue to be found as well.

Our motivation, however, came from the deformation quantization of contact interactions.
In particular, [9] uses the Morse potential to produce Robin boundary conditions at an infinite
potential wall, one of the simplest contact interactions, as a limit of a smooth potential.

In this paper, we present the mathematical aspects leading to a ‘pure’ deformation
quantization of the Morse potential (see equation (12) below) with general coefficients.

The exponentials in the Morse potential allow the pseudo-differential form of the ∗-
eigenvalue equations to be replaced by a difference-differential equation. The difference-
differential equations are then transformed into difference equations that can be solved for
all values of the parameters. The properties of the Mellin and the inverse Mellin transform
to relate derivatives with finite differences are extensively used. The details are given in the
next section, where we also re-derive the known solution for the special case of a Liouville
potential [4].

Finding exact solutions to the dynamical equations of deformation quantization is
challenging. Since, as an alternative, Wigner functions can be found from wavefunctions,
only a limited number of simple systems have been solved directly. These include the free
particle, the simple harmonic oscillator, the linear potential, the Liouville potential and the
Kepler system. Some of these solutions have also been found only recently when interest in
deformation quantization was renewed (see [1, 3, 4, 10]). This work adds to that effort, by
adding the Morse potential to the list.

We should mention that for a Morse potential with a simple choice of the parameter
values, a solution was found in [4]. We generalize that deformation quantization to Morse
potentials for arbitrary parameter values, so that the properties of the potential can be varied.

Our method should be applicable whenever difference-differential equations emerge, as
in the case of potentials that are linear combinations of exponential functions of the position.

In the third section we provide an explicit check to show that the solution provided is
indeed consistent with the Wigner transform of the density matrix of the Morse wavefunctions.
Our final section is a short conclusion.

2. Deformation quantization with a Morse potential

Let us start with a brief review of Wigner functions and the Wigner–Weyl correspondence
(see e.g. [1, 2]). For simplicity, we will restrict to one coordinate x and one conjugate
momentum p, describing a flat two-dimensional phase space R

2. The generalization to R
2N

is straightforward.
The Wigner function is related to the density operator of canonical quantization. More

generally, every operator Q̂ has a Weyl symbol Q(x, p) defined by

Q(x, p) = WQ̂ = 1

(2π)2

∫ ∞

−∞
dξ dηTr[Q̂ e−i(ξ x̂+ηp̂)] eiξx+iηp

= 1

2π

∫ ∞

−∞
dy e−iyp〈x + h̄y/2|Q̂|x − h̄y/2〉. (1)

The map W : Q̂ �→ Q(x, p), from operators to phase-space functions (and distributions), is
called the Wigner transform. It is a homomorphic map from the algebra of operators to the
∗-algebra of symbols:

W(Q̂R̂) = W(Q̂) ∗ W(R̂). (2)

2
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Here the symbols are multiplied using the Moyal ∗-product,

∗ = exp

{
ih̄

2
(
←
∂x

→
∂p −

←
∂p

→
∂x)

}
, (3)

for consistency with the Wigner transform (1). An inverse W−1 also exists—it is commonly
referred to as the Weyl map:

Q̂ =: W−1Q(x, p) = 1

(2π)2

∫ ∞

−∞
dξ dη dx dpQ(x, p) eiξ(x̂−x)+iη(p̂−p). (4)

Up to normalization, the Wigner function ρ(x, p) is defined as the Wigner transform of the
density operator ρ̂:

ρ(x, p) := 1

2πh̄
W(ρ̂). (5)

The Wigner function is a quasi-probability distribution. Expectation values are calculated
as

〈Q〉 =
∫

dx dpρ(x, p)Q(x, p). (6)

However, even with a pure state density operator ρ̂ = |ψ〉〈ψ |,
ρ(x, p) = 1

(2π)2h̄

∫ ∞

−∞
dy e−iypψ(x + h̄y/2)ψ∗(x − h̄y/2) (7)

is negative somewhere (except for the special case of Gaussian wavefunctions).
The Wigner function satisfies the equation of motion

ih̄∂tρ(x, p, t) = [H, ρ(x, p, t)]∗, (8)

where [H, ρ]∗ = H ∗ ρ − ρ ∗ H . It can be expressed as a linear combination of stationary
Wigner functions with time-dependent coefficients:

ρ(x, p, t) =
∑

EL,ER

C
ELER

e−i(EL−ER)t/h̄ρ
ELER

(x, p). (9)

Here ρ
ELER

= W(|EL〉〈ER|)/2πh̄ denotes the Wigner transform of a matrix element of the
density operator in the energy basis. As ∗-eigenfunctions, they can be found by solving the
system of equations

H ∗ ρ
ELER

(x, p) = ELρ
ELER

(x, p),

ρ
ELER

(x, p) ∗ H = ERρ
ELER

(x, p).
(10)

These are known as the ∗-eigenvalue (or sometimes ‘stargenvalue’) equations.
Alternatively, the Wigner transform

ρ
ELER

(x, p) =
∫ ∞

−∞
dy eiyp〈x + h̄y/2|EL〉〈ER|x − h̄y/2〉 (11)

allows them to be determined from the wavefunctions, if known. In the case of smooth
potentials, the resulting Wigner functions are known to agree2.

The goal here is to perform a ‘pure’ deformation quantization by solving the ∗-eigenvalue
equations directly, without reference to operators or wavefunctions. This will be done for the
Morse potential

V (x) = h̄2κ2

2m
(e−2αx − β e−αx). (12)

2 For discontinuous potentials, however, that is not necessarily the case [9, 11–13]. In [9] the results reported here
are applied to study the example of the infinite wall or, equivalently, a particle confined to the half-line.

3
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With its short-range repulsion and longer range attraction, this smooth potential has been
useful in many physical applications. In particular, the Morse potential can be used to recover
infinite wall with Robin boundary conditions in deformation quantization [9]. We will use the
Mellin transform to convert the ∗-eigenvalue equations to difference equations.

We use a new method that produces difference equations for potentials that are polynomials
of an exponential in x. This is significant since solutions to the ∗-eigenvalue equations are
generally difficult to find (see e.g. [4]). To see why, let us start with a more general Hamiltonian
and then specialize to the Morse potential. Writing

EL =:
h̄2k2

L

2m
, ER =:

h̄2k2
R

2m
; (13)

the ∗-eigenvalue equations (10) are of infinite order in momentum derivatives for a generic
Hamiltonian H = p2/2m + V (x):(

p2 − h̄2k2
L

2m

)
ρ − h̄2

8m
∂2
xρ − ih̄p

2m
∂xρ +

∞∑
n=0

1

n!

(
ih̄

2

)n

∂n
x V ∂n

pρ = 0, (14)

and similarly for the ‘right’ equation. However, the exponential form of the Morse potential
(12) allows them to be written as differential-difference equations—the exponentials generate
translations in the momentum. Their explicit form becomes

h̄2

8m
∂2
xρ +

ih̄p

2m
∂xρ = h̄2κ2

2m
e−2αxρ(x, p − ih̄α)

− βh̄2κ2

2m
e−αxρ

(
x, p − ih̄α

2

)
+

(
p2 − h̄2k2

L

2m

)
ρ (15)

and

h̄2

8m
∂2
xρ − ih̄p

2m
∂xρ = h̄2κ2

2m
e−2αxρ(x, p + ih̄α)

− βh̄2κ2

2m
e−αxρ

(
x, p +

ih̄α

2

)
+

(
p2 − h̄2k2

R

2m

)
ρ. (16)

The integral transform technique leads to further simplifications. Suppose the Wigner
function can be written as

ρ(x, p) = R(u, p), u := 16 e4αxα4/κ4. (17)

The Mellin transform of the Wigner function is

W(s, p) := M{R}(s, p) =
∫ ∞

0
us−1R(u, p) du. (18)

To transform (15) and (16) into difference equations for W (s, p), we consider the inverse
Mellin transform

R(u, p) = 1

2πi

∫ c+i∞

c−i∞
u−sW(s, p) ds, (19)

where the constant c can be any constant for which the transform converges according to the
Mellin inversion theorem.

2.1. Solution for the Liouville potential

We will first apply the method to the Liouville potential

VL(x) = h̄2κ2

2m
e−2αx. (20)

4
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It is the simplest case as it can be viewed as a Morse potential for b = 0. Also, we can check
our results since the Wigner functions for this potential have already been found in [4].

The ∗-eigenvalue equations (10) imply the difference equations

(p/h̄ + 2iαs)2W0(s, p) + (2α)2W0(s − 1/2, p − iαh̄) = k2
LW0(s, p),

(p/h̄ − 2iαs)2W0(s, p) + (2α)2W0(s − 1/2, p + iαh̄) = k2
RW0(s, p).

(21)

Let us now assume that the solution is factorized into two parts—‘left’ and ‘right’ factors—
each depending on kL or kR only:

W(s, p) = NwL

(
s − ip

2αh̄
, kL

)
wR

(
s +

ip

2αh̄
, kR

)
, (22)

with N a normalization constant. The factorization (22) is motivated by solutions found for
specific values of the parameter b. In [4] the Wigner functions are found for b = 0 and
b = 1. They can be written as Meijer G-functions or, alternatively, as contour integrals. In
addition, using the Darboux method outlined in [4], we found the solution for b = 2. In all
three cases we observed the factorization (22), which was then assumed for b ∈ R. While
possibly omitting some solutions of the ∗-eigenvalue equations, this ansatz allows us to find
those describing the physical states, as we confirm in section 3.

For the left factor, we find

(p/h̄ + 2iαs)2wL(s − ip/2αh̄) + (2α)2wL(s − ip/2αh̄ − 1) = k2
LwL(s − ip/2αh̄), (23)

and for the right factor,

(p/h̄ − 2iαs)2 wR(s + ip/2αh̄) + (2α)2 wR(s + ip/2αh̄ − 1) = k2
RwR(s + ip/2αh̄). (24)

Using the substitution t = s − ip/2αh̄, we arrive at

w(t − 1, kL) =
[
t2 +

k2
L

(2α)2

]
w(t, kL). (25)

Equation (24) also leads to the above equation if we use t = s + ip/2αh̄ and kR instead.
Therefore we need to work only with (25) and the solutions will just differ in their arguments
and labels of k.

The solution of (25) is

w(t, kL) = �(−t + ikL/2α)�(−t − ikL/2α), (26)

by the defining property �(z + 1) = z�(z) of the gamma function. Tracing back to
equations (22)–(23), (19) and (17), we can write the Wigner function in terms of the inverse
Mellin transform:

ρ
kLkR

(x, p) ∝
∫ c+i∞

c−i∞
dsu−s

∏
±,±′

�

(
−s +

i(p/h̄ ± kL)

2α

)
�

(
−s − i(p/h̄ ±′ kR)

2α

)
. (27)

This last is an integral representation of the Meijer G-function. Using equation (43) on p 353
in [14], the Wigner function becomes

ρ
kLkR

(x, p) ∝ G40
04

(
1

u

∣∣∣∣ i(p/h̄ + kL)

2α
,

i(p/h̄ − kL)

2α
,− i(p/h̄ − kL)

2α
,− i(p/h̄ + kL)

2α

)
, (28)

where we used the identity

G40
04 (u|1 − a1, 1 − a2, 1 − a3, 1 − a4) = G40

04 (1/u|a1, a2, a3, a4) . (29)

As it should, the formula for the Wigner function (29) coincides with the one obtained using
different methods in [4]. It describes the phase-space quasi-distribution for a particle in a
Liouville potential. The advantage of the method proposed here is that it can be generalized
to the Morse potential.

5
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2.2. Solution for the Morse potential

Now let us go back to the original problem of finding the Wigner function for the potential
(12). The left ∗-eigenvalue equation has the form

(p/h̄ + 2iαs)2Wb(s, p) + (2α)2Wb(s − 1/2, p − iαh̄) − b

2
(2α)2Wb(s − 1/4, p − iαh̄/2)

= k2
LWb(s, p), (30)

where we set b = βκ/α. We also have the complex conjugate (right) equation, with kL

replaced by kR. To solve the new left difference equation (30), we substitute the ansatz (22) to
obtain

(p/h̄ + 2iαs)2 wL(s − ip/2αh̄, kL) + (2α)2 wL(s − ip/2αh̄ − 1, kL)

− b

2
(2α)2wL(s − ip/2αh̄ − 1/2, kL) = k2

LwL(s − ip/2αh̄, kL). (31)

Using the same substitution t = s−ip/2αh̄ as in (24) and switching to wb = wL to account for
the parameter dependence, we arrive at the difference equation relevant to the Morse potential:

wb(t − 1, kL) − b

2
wb(t − 1/2, kL) =

[
t2 +

k2
L

(2α)2

]
wb(t, kL). (32)

This equation has a trivial solution for b = 0, the Liouville case. The right factor satisfies an
identical equation with kL replaced by kR and t = s + ip/2αh̄.

For b = 1, the solution can be written in terms of gamma functions, as in the b = 0 case:

w1(t, k) ∝ �

(
−t +

ik

2α

)
�

(
−t +

1

2
− ik

2α

)
+ �

(
−t +

1

2
+

ik

2α

)
�

(
−t − ik

2α

)
. (33)

The inverse Mellin transform then gives us the Wigner function:

ρ
kLkR

(x, p) ∝ G40
04

(
1

u

∣∣∣∣ ip

2αh̄
+

ikL

2α
,

1

2
+

ip

2αh̄
− ikL

2α
,− ip

2αh̄
+

ikR

2α
,

1

2
− ip

2αh̄
− ikR

2α

)

+ G40
04

(
1

u

∣∣∣∣ ip

2αh̄
+

ikL

2α
,

1

2
+

ip

2αh̄
+

ikL

2α
,

1

2
− ip

2αh̄
+

ikR

2α
,− ip

2αh̄
− ikR

2α

)

+ G40
04

(
1

u

∣∣∣∣1

2
+

ip

2αh̄
+

ikL

2α
,

ip

2αh̄
− ikL

2α
,− ip

2αh̄
+

ikR

2α
,

1

2
− ip

2αh̄
− ikR

2α

)

+ G40
04

(
1

u

∣∣∣∣1

2
+

ip

2αh̄
+

ikL

2α
,

ip

2αh̄
− ikL

2α
,

1

2
− ip

2αh̄
+

ikR

2α
,− ip

2αh̄
− ikR

2α

)
.

(34)

Another solution that is easy to find is for b = 2:3

w2(t, k) ∝ (t + 1/4)
∏
±

�

(
−t ± ik

2α

)
−

∏
±

�

(
−t +

1

2
± ik

2α

)
. (35)

It can be written in a different form which shows a pattern shared with the case b = 1:

w2(t, k) ∝ (2ik/α + 1)�(−t + ik/2α)�(−t + 1 − ik/2α)

+
4ik

α
�(−t + 1/2 + ik/2α)�(−t + 1/2 − ik/2α)

+ (2ik/α − 1)�(−t + 1 + ik/2α)�(−t − ik/2α). (36)

3 The b = 2 Wigner function can also be found from the Liouville case using supersymmetric quantum mechanics.
In deformation quantization, the ladder operators of supersymmetric quantum mechanics are replaced by functions
and a star product is used; however, the transition is fairly straightforward [4].

6
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The Wigner function can be found with a trivial but lengthy calculation that is essentially
identical to the b = 0 and b = 1 cases. The exact combination of Meijer G-functions is not of
interest to us; we will derive a general expression that includes this later.

A useful observation is that the left factors (for different b) can be written as

w1 = C1w0(t − 1/4, k + iα/2) + C2w0(t − 1/4, k − iα/2) (37)

and

w2 = C1w0(t − 1/2, k + iα) + C2w0(t − 1/2, k) + C3w0(t − 1/2, k − iα). (38)

This suggests that by choosing the constants correctly, we can write the solution for any integer
b as

wb(t, k) ∝
∑

n=− b
2 ,− b

2 +1,..., b
2

Cb
nw0 (t − b/4, k − inα) . (39)

We can substitute this ansatz into equation (32) using undetermined coefficients. In principle,
a comparison of the coefficients of independent terms can determine Cb

n for any b. This seems
to fail, however, in the case of non-integer b. Furthermore, even for the simplest cases, this
program is very difficult to carry out4. Clearly we need an algorithm that reproduces the
constants directly and allows a generalization to include all Morse potentials of the form (12).

2.3. Systematic solution of the difference equations

We now show how to find the relevant solutions of the ∗-eigenvalue equations for the Morse
potential, for all b ∈ R. We exploit once again the property of the Mellin transform to relate
differential equations and their solutions to difference equations and their solutions.

To convert our difference equation (32) into a differential equation, we use the following
two properties of the Mellin transform:

M{τ 2f ′′(τ ) + τf (τ)}(s) = s2M{f (τ)}(s), (40)

M{τ af (τ )}(s) = M{f (τ)}(s + a). (41)

If we apply the inverse Mellin transform directly to (32), we end up with an equation that we
cannot solve. This is because the Mellin transform converts argument translations into powers
of the argument via (41). To eliminate fractional powers, we use the substitution s = 2t . The
new equation for w̃b(s) = w(t (s)),

w̃b(s − 2) − b

2
w̃b(s − 1) =

[( s

2

)2
+

k2

(2α)2

]
w̃b(s), (42)

results in a simpler, integrable equation

τ 2f ′′(τ ) + τf ′(τ ) + [(k/α)2 − 4/τ 2 + 2b/τ ]f (τ), (43)

where w̃(s) = M{f (τ)}(s).
The solution f (τ) of this equation can be found if we make the substitution f (τ) =

τ−1/2g(τ) and then u(z) = g(t (z)), where z = 1/τ . The new function u(z) satisfies the
so-called Whittaker equation, treated in [15], chapter XVI, and also in the appendix. Its two
linearly independent solutions are defined in [16], p 755. They are called Whittaker functions

4 For integer b, see equation (52) below, however.

7
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and can be expressed in terms of the Tricomi confluent hypergeometric function U(μ, ν, z)

and the Kummer confluent hypergeometric function M(μ, ν, z):5

Mlm(z) = zm+1/2 e−z/2M(1/2 + m − l, 1 + 2m; z), (44)

Wlm(z) = zm+1/2 e−z/2U(1/2 + m − l, 1 + 2m; z). (45)

For our purposes, we only need the definitions of those functions:

M(μ, ν; z) =
∞∑

n=0

(μ)n

(ν)n

yn

n!
, (46)

U(μ, ν; z) = �(ν − 1)

�(μ)
z1−νM(1 + μ − ν, 2 − ν; z) +

�(1 − ν)

�(μ − ν + 1)
M(μ, ν; z). (47)

Here we use the Pochhammer symbol (μ)n := μ(μ + 1) · · · (μ + n − 1), (μ)0 := 1.
The solution is

f (τ) = C̃1τ
1/2Mb

2 , ik
α
(4/τ) + C̃2τ

1/2Wb
2 , ik

α
(4/τ). (48)

This is the general solution and therefore depends on two arbitrary constants, C̃1, C̃2. We
must set C̃1 = 0 to describe the physical states, however. To see that, we have to transform
this back to the solutions of the difference equations and compare with the known solutions,
re-derived in the previous sections. Alternatively, one can impose the properties of the ∗-eigen
Wigner functions: ρij = ρ∗

ji and ρi = ρ∗
i . For example, in the case of diagonal elements one

finds that the reality of the Wigner function implies that the right and left factors are also real.
Since the Whittaker M-function in (48) transforms into a complex function one must set C̃1 to
zero.

Let us first confirm that (48), with C̃1 = 0, indeed recovers the known solutions (26),
(33), (36) for b = 0, 1, 2, respectively, and that it also justifies ansatz (39) for all non-negative
integer b. For b ∈ N0, we can write the Whittaker W -function in terms of the modified Bessel
functions

Wn
2 ,μ(y) = y

n+1
2√
π

(
1 − n

2
+ μ

)
n

n∑
k=0

(−1)n+k(2k − n + 2μ)(−n)n−k

�(n − k)(k − n + 2μ)n+1
K−k+ n

2 −μ

(y

2

)
. (49)

With the help of the integral representation of the Bessel functions (effectively finding the
inverse Mellin transform),

Kν(z) = 1

4πi

∫ c+i∞

c−i∞
�(s)�(s − ν)

( z

2

)ν−2s

ds, (50)

we can find the solution of (42) for integer b:

wb(t, k) ∝
b∑

n=0

Cb
n� (−t + n/2 + ik/2α) � (−t − n/2 + b/2 − ik/2α) . (51)

This is precisely (39), but with a shifted summation index. The coefficients are now explicit:

Cb
n = (−1)n(2n − b + 2ik/α)(−b)b−n

(b − n)!(n − b + 2ik/α)b+1
. (52)

5 The Whittaker function Mlm(z) should not be confused with the Kummer function M(μ, ν, z) in the above
equation. Subscripts are used to denote the parameters of the Whittaker functions in the literature, and the explicit
bracket notation is used for confluent hypergeometric functions. For further information involving the hypergeometric
functions, see [16], p 753, and [17], pp 503–6.
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The Wigner function for b ∈ N0 can be found from (51) as in the preceding two
subsections, with the result

ρ
kLkR

(x, p) =
b∑

m,n=0

Cb
mCb

nG
40
04

(
1

u

∣∣∣∣ n

2
+

i(p/h̄ + kL)

2α
,
b

2
− n

2
+

i(p/h̄ − kL)

2α
,

m

2
− i(p/h̄ − kR)

2α
,
b

2
− m

2
− i(p/h̄ + kR)

2α

)
. (53)

Bound states can also be treated this way; one only needs to consider imaginary k, for
energies E < 0. The resulting form of the Wigner function differs, however, from the
expression found by the Wigner transform:

ρ(z, p) ∝ z2ν−b+1
ν∑

l1,l2=0

(
b − ν − 1

ν − l1

)(
b − ν − 1

ν − l2

)
(−z)l1+l2

l1! l2!
Kl1−l2−2ip/α(z). (54)

To write it in this form, we use the properties of the Whittaker functions. Recall that the
energies are given by (A.9), and we can write

f (τ) ∝ τ 1/2Wb
2 , ik

α
(4/τ) = τ 1/2Wb

2 , b
2 −ν− 1

2
(4/τ). (55)

The relationship

Wa,a−ν− 1
2
(z) = (−1)νν!za−ν e−z/2L2a−2ν−1

ν (56)

(for integer ν) and (A.8) allow us to write the solution as

f (τ) ∝ e−2/τ

ν∑
l=0

(−1)l

l!

(
b − ν − 1

ν − l

)(
4

τ

)l+b/2−ν−1/2

. (57)

Transforming the above, we find the corresponding factor

w(t) ∝
ν∑

l=0

(−2)l22t

l!

(
b − ν − 1

ν − l

)
� (−2t + l + b/2 − ν − 1/2) . (58)

With the help of the inverse Mellin transform, we find (54) as in the unbound case, using (50)
and (19).

Let us proceed to the case of non-integer b. For b ∈ R, we find an explicit and closed
expression for the solution of the difference equation. We start by rewriting the solution of
the differential equation (43) in terms of hypergeometric functions:

f (τ) = e−2/τ τ−ik/αU

(
1

2
− b

2
+

ik

α
, 1 +

2ik

α
; 4

τ

)
. (59)

This is necessary in order to perform the inverse Mellin transform of f (τ) in closed terms,
which presents a technical problem if we use the Whittaker function.

We use relationship (47) between the Kummer and Tricomi hypergeometric function and
the integral expression

e−σxM(β, γ ; λx) =
∫ c+i∞

c−i∞
dsx−sσ−s�(s)2F1(β, s; γ ; λσ−1) (60)

to make it possible to find the inverse Mellin transform of (59). It is given in terms of the
Gauss hypergeometric function 2F1. Switching back to our original variable t, and indicating
the k-dependence explicitly, we can write

9
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wb(t, k) ∝ 4t+ik/2α�(−2ik/α)

�(1/2 − b/2 − ik/α)
�(−2t + ik/α)

× 2F1 (1/2 − b/2 + ik/α,−2t + ik/α; 1 + 2ik/α; 2)

+
4t−ik/2α�(2ik/α)

�(1/2 − b/2 + ik/α)
�(−2t − ik/α)

× 2F1 (1/2 − b/2 − ik/α,−2t − ik/α; 1 − 2ik/α; 2) . (61)

This is the solution of the difference equation (32) for any real b, including the ones we already
found. After substitution in (17), (19), (22), it yields our main result:

ρ
ELER

(x, p) ∝
∫ c+i∞

c−i∞
ds u−swb

(
s − ip

2αh̄
, kL

)
wb

(
s +

ip

2αh̄
, kR

)
. (62)

3. Wigner functions from wavefunctions for a Morse potential

For completeness, let us confirm that our solutions of the ∗-eigenvalue equations (10) are the
same as the Wigner functions derived from the wavefunctions (see the appendix) using (11).

Consider the unbound states first:

ψ(y) = C e−y/2Ãy ik/αM

(
1

2
− b

2
+

ik

α
, 1 +

2ik

α
; y

)

+ C e−y/2Ã∗y−ik/αM

(
1

2
− b

2
− ik

α
, 1 − 2ik

α
; y

)
. (63)

Using the substitutions w = e−αh̄y/2 and v = 2κe−αx/α, we can rewrite the integral transform
(11). The result involves integration over w of the products of the type

exp[−v(w + w−1)/2]wmvnM(a1, b1; vw)M(a2, b2; v/w), (64)

which (to the best of our knowledge) are not integrable in a closed form. However, we
can expand the Kummer M-function as in (46). Then all the integrations can be performed
explicitly using the integral representation of the Bessel K-function

Kν(z) = 1

2

∫ ∞

0
dww−(ν+1) e− 1

2 z(w+1/w). (65)

This procedure leads to an infinite sum:

ρ(v, p) ∝
∞∑

m,n=0

vm+n

m!n!

[
Ã2v2ik/α (χ)m(χ)n

(ς)m(ς)n
Kn−m−2ip/h̄α(v)

+ |Ã|2 (χ)m(χ̄)n

(ς)m(ς̄)n
Km−n+2i(k−p/h̄)/α(v)

+ |Ã|2 (χ̄)m(χ)n

(ς̄)m(ς)n
Km−n−2i(k+p/h̄)/α(v)

+ (Ã∗)2v−2ik/α (χ̄)m(χ̄)n

(ς̄)m(ς̄)n
Kn−m−2ip/h̄α(v)

]
, (66)

with χ := 1/2 − b/2 + ik/α and ς := 1 + 2ik/α. This expression can now be used to compare
with (61), (62).

To do that we need to calculate explicitly the contour integral (62). We are facing a similar
problem—the integrand is too complicated and we need to rewrite the Gauss hypergeometric
function as

2F1(a, b; c; z) =
∞∑

n=0

(a)n (b)n

(c)n

zn

n!
(67)

10
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in order to integrate in a closed form. With the use of the contour representation of the Bessel
K-function (50) and some simple algebra, we recover the infinite sum (66). This confirms that
the Wigner function (62) indeed coincides with the Wigner transform of the density matrix for
the Morse potential from the Schrödinger treatment.

The Wigner functions of the bound states can be obtained from the known wavefunctions
(A.7) using the integral transform (11).6 Equation (A.8) allows us to evaluate the integral in
a closed form using the modified Bessel functions Kν(x). The substitutions v = 2κ e−αx/α

and w = exp(−αh̄y/2) in (11) and the integral representation (65) are used.

4. Conclusion

Our main result is the solution (62), (61) of the ∗-eigenvalue equations (10) for the Morse
potential (12) with arbitrary real b. It subsumes the simpler formula (62), (39), (52) valid for
all b ∈ N0.

The solutions obtained have already been applied to a study of Robin boundary conditions
in phase-space quantum mechanics [9].

It should also be possible to use our method to solve the ∗-eigenvalue equations for other
potentials that are polynomial in an exponential (say exp(−αx)).
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Appendix. The Morse potential in Schrödinger quantum mechanics

Following Matsumoto [18], we can solve the stationary Schrödinger equation for the unbound
wavefunctions of the Morse potential (12). The substitution ψ(x) = φ(z), z = exp(−αx),
changes the Schrödinger equation into

z2φ′′ + zφ′ +
1

α2

[
2mE

h̄2 − κ2z2 + κ2β z

]
φ = 0. (A.1)

This can be further transformed into a canonical form (without a first derivative term) using the
substitution φ(z) = z−1/2 F(z). Changing the variables to y := 2κz/α leads to the Whittaker
equation, treated in [15], chapter XVI:

f ′′ +

{
−1

4
+

b

2

1

y
+

1

y2

[
1

4
−

(
ik

α

)2
]}

f = 0, (A.2)

where f (y) := F(αy/2κ) and, as before, k = √
2mE/h̄ and b = βκ/α.

6 For b = 2, the bound-state Wigner functions for the Morse potential (12) have already been treated this way in
[19]. However, they are not obtained there by solving their dynamical equations, as we have done. In addition, while
we find the unbound-state Wigner functions in the same way, the unbound states are not considered in [19].
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Now the wavefunction can be written as

ψk(x) = eαx/2[C̃1Mb
2 , ik

α
(y(x)) + C̃2Wb

2 , ik
α
(y(x))]. (A.3)

Imposing reality yields C̃1 = 0. The second term has physical asymptotic behaviour: for large
positive x, it is sinusoidal with a phase depending on the potential parameters; for negative
x far from the origin, there is the expected rapid exponential decay of a classically forbidden
region. The wavefunction is therefore

ψk(x) = C eαx/2Wb
2 , ik

α

(
2κ

α
e−αx

)
. (A.4)

With the help of equation (47), we can rewrite this result in a form similar to that given
by Matsumoto in [18] for a Morse potential with b = 2. The wavefunction is manifestly real
in this form:

ψ(y) = C e−y/2Ãy ik/αM

(
1

2
− b

2
+

ik

α
, 1 +

2ik

α
; y

)

+ C e−y/2Ã∗y−ik/αM

(
1

2
− b

2
− ik

α
, 1 − 2ik

α
; y

)
, (A.5)

with C a real normalization constant, and

Ã = �
(− 2ik

α

)
�

(
1
2 − b

2 − ik
α

) . (A.6)

Let us now consider the bound states. Their wavefunctions are given in [19] as

ψ(x) ∝ exp(−κ e−αx/α) e−α(ν−b/2+1/2)xLb−2ν−1
ν (2κ e−αx/α), (A.7)

where

Lλ
n(x) =

n∑
m=0

(−1)m
(

n + λ

n − m

)
xm

m!
(A.8)

are the associated Laguerre polynomials Lλ
n(x). The energies are

Eν = −h̄2α2

2m
(ν − b/2 + 1/2)2, (A.9)

for integer ν ∈ [0, b/2�], where a� is the smallest integer less than a.
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